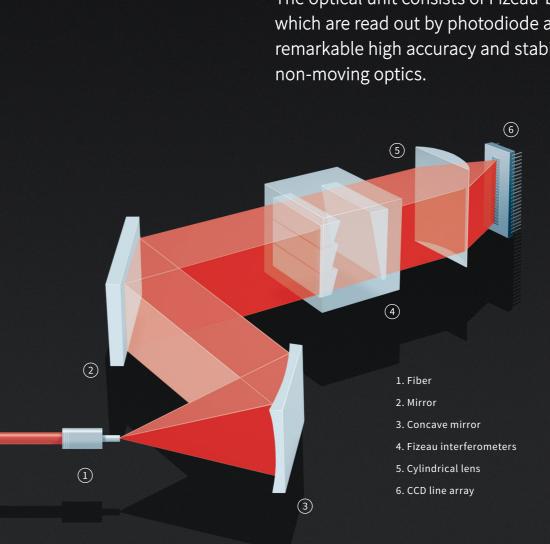


Wavelength Meter

Sensitive and compact device with a large spectral range for high speed measurements of pulsed and continuous lasers

Unrivaled precision

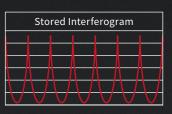
The sturdiness of our design has been proven even under extreme conditions such as freefall dropping experiments or in air-borne applications (LIDAR). The absence of movable parts ensures our most valued advantages, e.g. high-speed measurements of pulsed and continuous lasers.


 Picture courtesy: DLR Institute of Atmospheric Physics The HighFinesse/Ångstrom wavelength meters are the unsurpassed high-end instruments for wavelength measurement of pulsed or continuous laser sources. They deliver the superb absolute and relative accuracy required by cutting edge scientific research, as well as industrial and medical applications. The unmatched precision of the WS8 series and all of our other wavelength meters is achieved by using non-moving Fizeau interferometers in a unique geometric configuration. To allow even higher stability and precision, temperature and pressure effects are compensated*.

The wavelength meters are connected to the PC via a USB interface and are ready for use as soon as the software delivered with the device is installed. A compact, thermally insulated housing holds the optical elements as well as the electronics. The design enables the integration of additional options, allowing customized solutions to specific applications even years after purchase.

Enter a new world of accuracy!

*For more details, please consult our website



The light is coupled into the device via a fiber and then collimated by a mirror, before entering the solid-state Fizeau-interferometers. The interference pattern is imaged by a cylindrical lens onto CCD photodiode arrays. This recorded pattern is transferred to your computer via a high-speed USB connection which allows data acquisition rates of up to 76 kHz.

The software fits and compares the pattern to a previously recorded calibration to calculate the wavelength. One significant advantage of our Fizeau-based wavelength meters,

The optical unit consists of Fizeau-based interferometers which are read out by photodiode arrays. We achieve remarkable high accuracy and stability by using exclusive,

Result 632.991060 nm

compared with other available instruments, is the absence of mechanical moving parts. This ensures the high reliability of accuracies up to 2 MHz (absolute) and ensures the outstanding robustness HighFinesse wavelength meters are noted for. The design enables the precise measurement of not only continuous lasers, but also pulsed laser sources, which broadens the application range even further.

Another key benefit is the simplicity of our wavelength meters. Simply connect the USB cable and run the program supplied. That's all it takes!

Product Overview

Up until now our multichannel switches have always been limited in either the wavelength range for single mode switches, or accuracy for multimode switches. Our new PCF switches solve this problem. Using endlessly single mode photoniccrystal-fibers (PCF) allows us to produce a switch that offers single mode operation for all wavelengths. Using the PCF switch it is possible to switch between light-sources at any wavelength within the device's measurement range and maintain the full accuracy. Combining the PCF switch with other options such as PID control opens new possibilities.

Sold exclusively with the WS8 the PCF switches are available in twochannel (standard), four-channel, and eight-channel configurations.

The HighFinesse/Ångstrom WS8 wavelength meter and PCF switch: enter a new world of accuracy!

	Standard (330 – 1180 nm)		
	UV-I (248 – 1180 nm)		
	UV-II (192 – 800 nm)		
	VIS/IR (330 – 1750 nm) ¹⁷⁾		
Measurement range	VIS/IR-II (500 – 2250 nm) ¹⁷⁾		
	IR-I (630 – 1750 nm)		
	IR-II (1000 – 2250 nm)		
	IR-III (1400 – 11000 nm)		
	192 – 330 nm ²⁾		
	330 – 420 nm		
Absolute accuracy ¹⁾	420 – 1100 nm		
	1100 – 2250 nm		
	1400 – 11000 nm		
Quick coupling accuracy (with	multi mode fiber)		
Wavelength deviation sensitivi	ty/Measurement resolution ⁶⁾		
Linewidth option	Accuracy ⁷⁾		
Measurement speed ⁸⁾	Standard		
	UV-I		
Required input	UV-II		
energy and power ⁹⁾	IR-I		
	IR-II ¹⁰⁾		
FSR of the Fizeau interferomet	ers (Fine/wide mode) 11)		
Calibration ¹⁸⁾			
Recommended calibration per	iod		
Warm-up time			
Dimensions L × W × H			
Weight			
Interface			
Power supply			
	etter than 20% of the laser linewidth gth (Outside of this range, the accuracy is 30 MHz, 1 (Outside of this range, the accuracy is 10 MHz,		

6) Standard deviation. WS6-200 and higher models require singlemode or PC fibers to reach this resolution

7) Not better than 5 % of the linewidth.

8) Depending on PC hardware and settings. Highspeed models up to 50 kHz available

 						
3 3 3000 2000 3000	0.6 0.3 600	0.4				
3 3 3000 2000 3000	0.6 0.3 600	0.4				
3 3 2 3000 2000 3000	0.6 0.3 600	0.4				
3 3 2 3000 2000 3000	0.6 0.3 600	0.4	22) 0.2 0.04	0.1	0.1	
3 2 3000 2000 3000	0.6 0.3 600	0.4	0.2 0.04	20) 0.1	0.1	
3 2 3000 2000 3000	0.6 0.3 600	0.4	0.2	0.1	0.1	
3 2 3000 2000 3000	0.6 0.3 600	0.4	0.2	0.1	0.1	
2 3000 2000 3000	0.3	0.2	0.04			
3000 2000 3000	600			0.02		
2000 3000		200			0.01	0.01
3000	400		60	30	10 3)	24)
		150	40	20	10 3)	_
	_	200	_	_	_	-
3000	600	600 5)	150	100	100	100
500	20	4 21)	2	1	0.4	0.219)
2000	500	400	200	100	100	100
950 (IR: 1800, IR-III: 100)	950 (IR: 1800)	500 (IR: 1800, IR-III: 100)	500	500	500	500
0.02 - 15	0.02 - 15	0.02 - 15	0.02 - 15	0.08 - 60	0.08 - 60	0.08 - 60
0.02 - 10	0.02 - 10	0.02 - 10	0.02 - 10	0.08 - 40		_
0.02 - 200	0.02 - 200	0.02 - 200	0.04 - 400	_	_	_
2 – 200	2 - 200	2 - 200	2 – 200	8 - 800	8 - 800	_
2 - 80	2 - 80	2 - 80	2 - 80	8 - 800		_
1	_	1	_	_	_	_
100	16/10012)	16/100 ¹³⁾	8/32	4/32	2/20	2/20
Built-in calibration ¹⁴⁾		Built-in calibration ¹⁵⁾	Stabilized HeNe laser or any other well known laser source Δv < 5 MHz	SLR-780 or any other well known laser source Δv < 2 MHz	l2 stabilized HeNe or any well known laser source Δν < 1 MHz	
	≤1 month		≤ 14 days	≤ 10 hours	≤1hour	≤ 2 minutes
No warm-	up time under cor	nstant ambient con	ditions ¹⁶⁾		> 30 minutes	
60 × 120 × 120	360 × 120 × 120	360 × 200 × 120	360 × 200 × 120	360 × 200 × 120	360 × 200 × 120	360 × 200 × 120
2.8	2.8	5.518)	5.9	6.1	6.4	6.4
		High-s	speed USB 2.0 conn	ection		
	950 (IR: 1800, IR-III: 100) 0.02 - 15 0.02 - 10 0.02 - 200 2 - 200 2 - 80 1 100 B B No warm	950 950 (IR: 1800, 950 (IR: 1800) (IR: 1800) $0.02 - 15$ $0.02 - 15$ $0.02 - 10$ $0.02 - 10$ $0.02 - 200$ $2 - 200$ $2 - 200$ $2 - 200$ $2 - 80$ $2 - 80$ 1 $ 100$ $16/100^{12}$ Built-in calibration 1 Suitt-in calibratio	950 (IR: 1800, IR-III: 100) 950 (IR: 1800) 500 (IR: 1800, IR-III: 100) $0.02 - 15$ $0.02 - 15$ $0.02 - 15$ $0.02 - 10$ $0.02 - 10$ $0.02 - 10$ $0.02 - 200$ $0.02 - 200$ $0.02 - 200$ $2 - 200$ $2 - 200$ $2 - 200$ $2 - 200$ $2 - 200$ $2 - 200$ $2 - 80$ $2 - 80$ $2 - 80$ 1 $ 1$ 100 $16/100^{12}$ $16/100^{13}$ Built-in calibration ¹⁴ Solver constant ambient con $60 \times 120 \times 120$ $360 \times 120 \times 120$ $360 \times 200 \times 120$ 2.8 2.8 5.5^{18} High-s Power consumption < 2	950 (IR: 1800, IR-III: 100) 950 (IR: 1800) 500 (IR: 1800, IR-III: 100) 0.02 - 15 0.02 - 15 0.02 - 15 0.02 - 10 0.02 - 10 0.02 - 10 0.02 - 200 0.02 - 200 0.02 - 200 2 - 200 2 - 200 2 - 200 2 - 80 2 - 80 2 - 80 1 - 1 100 16/100 ¹²⁰ 16/100 ¹³⁰ Built-in calibration ¹⁴ Built-in calibration ¹⁵⁰ 60 × 120 × 120 360 × 120 × 120 360 × 200 × 120 2.8 2.8 5.5 ¹⁸ 5.9 High-speed USB 2.0 conn Power consumption < 2.3 W, power provide	950 (IR: 1800, IR-III: 100) 950 (IR: 1800) 500 (IR: 1800, IR-III: 100) 500 500 0.02 - 15 0.02 - 15 0.02 - 15 0.02 - 15 0.02 - 10 0.08 - 60 0.02 - 10 0.02 - 10 0.02 - 10 0.02 - 10 0.08 - 60 - 0.02 - 200 0.02 - 200 0.02 - 200 0.04 - 400 - - 2 - 200 2 - 200 2 - 200 2 - 200 8 - 800 - 2 - 80 2 - 80 2 - 80 2 - 80 8 - 800 - 100 16/100 ¹²) 16/100 ¹³) 8/32 4/32 Stabilized HeNe laser or any other well known laser source $\Delta v < 5$ MHz Subilit-in calibration ¹⁴ Stabilized HeNe laser or any other well known laser source $\Delta v < 5$ MHz Stabilized HeNe laser or any other well known laser source $\Delta v < 5$ MHz Stabilized HeNe laser or any other well known laser source $\Delta v < 5$ MHz Stabilized HeNe laser or any other well known laser source $\Delta v < 5$ MHz Stabilized HeNe laser or any other well known laser source $\Delta v < 5$ MHz Stabilized HeNe laser or any other well known laser source $\Delta v < 5$ MHz	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

9) The CW power interpretation in $[\mu W]$ compares to an exposure of 1s (generally the energy	16) IF
needs to be divided by the exposure time to obtain the required power)	17) T
10) μ J interpretation for pulsed lasers. CW signals need more power in [μ W] since the exposure	a
is limited at IR-II devices	18) 2
 Each device in each mode can measure lasers with a linewidth up to 30% of the correspondig FSR 	19) 1
	20) P
12) For IR devices: 32/32	Р
13) For IR-I and IR-II devices: 16/16, for IR-III devices: 8/80	21) IF
14) IR-III: external calibration source needed, e.g. SLR-1532	

15) IR-devices: external calibration source needed, e.g. SLR-1532

IR-II: > 30 min. warm-up, or until ambient equilibrium

These devices have a decreased sensitivity by a factor of 4, compared to the Standard

and IR ranges in the required input fields, respectively.

2.8 for IR-I and IR-II

100 kHz for special ranges on request

Photonic Crystal Switches can be used up to 2000 nm.

Please contact HighFinesse if you want to measure over 2000 nm.

) IR-III: 20 MHz

) Measurement range WS7-60 IR-I: 530 – 1750 nm

Wavelength Meter Overview 07-2019 · This document provides general information only and may be subject to change at any time without prior notice. Upgrade options expand the capabilities of our wavelength meters to match individual requirements of cutting edge research and measurements.

In order to measure the MC frequencies of more than just one laser at a time, an opto-mechanical switch is used. The combination of our high-speed wavelength meters with one of the quickest fiber switches (MEMS) available allows up to eight channels to be measured almost simultaneously. Exposure time and other parameters can be defined independently for each light source. You can choose between singlemode or multimode fiber switches, depending on the required accuracy level of your measurements.

With the PID option it is possible to stabilize the frequency of a laser con-

nected to the wavelength meter using a software based proportional-integral-derivative controller (PID controller). Unlike analog PID electronics, the PID option provides software based signal processing, allowing the laser to be stabilized to a specific user defined frequency or regulated with an arbitrary pattern. This makes it extremely useful in experiments where the laser frequency has to be actively regulated

or varied to fit changing experimental conditions, such as laser cooling, atomic detection, trapping and spectroscopy. Combined with the MC option the wavelength meter can be used to stabilize multiple lasers simultaneously. The regulation speed and guality and absolute accuracy match the measurement speed, relative accuracy and absolute accuracy of the wavelength meter respectively. The measurement speed is not affected by the regulation.

All wavelength meters detect TTL | and measure pulsed signals automatically. Additionally, this option allows the user to trigger pulsed measurements externally. The TTL option guarantees synchronization between pulsed excitation and measurement. It provides low-noise signals without parasitic parts when measuring pulsed signals with low duty cycles.

The linewidth estimation of a singlemode laser source is performed by a special algorithm which eliminates the interferometer's instrument response

function. The algorithm enables the estimation of the linewidth with an accuracy better than the tenth of the device FSR.

The spectrometer option D allows the analysis of emission spectra to an accuracy of 6 GHz, for laser sources with broad emission. The software automatically searches the spectral section where the laser emission line is located and displays it on the screen. In combination with the additional Fizeau interferometer array this allows wide range applications with a single device.

Standard HighFinesse CAL wavelength meters up to an absolute accuracy of 60 MHz feature auto-calibration via an integrated calibration source. This guarantees the accuracy and stability of measurements with our wavelength meters. For the higher accuracies we offer a variety of frequency stabilized, narrow linewidth, laser sources with up to ±10 kHz frequency stability for different applications.

Fastest Wavelength Meters

Our WS Fast series features ultra high speed measurement rates, the fastest commercially available!

Readout rates can be up to 24 kHz in the 380 – 1050 nm and even up to 76 kHz in the 980 – 1650 nm wavelength range. Fast swept laser sources can be precisely characterized with these wavelength meters.

1) Depends on PC and measurement mode 2) Depends on gain mode

OEM and customizations

While our standard housings are well suited for lab conditions there are cases where our For these instances we can work with the customer to design a housing suitable for their requirements. In the past these have included an increased protection from

environmental influences and increased shock resistance. Contact us for user defined functions or OEM applications! The unmatched accuracy of our wavelength meters is used devices are subjected to extreme conditions. to actively stabilize the seed laser of a Laser Guide Star system (right). This guarantees that the yellow laser light is exactly on resonance with the atomic transition to enable the LGS to shine bright!

Standalone Wavelength Meter

HighFinesse /Ångstrom wavelength meters are also available in an industry standard 3U 19-inch case, allowing easy

	WS6-600 VIS Fast	WS6-600 IR Fast	WS6-200 IR Fast		
Measurement range (QE > 60%)	380 – 1050 nm	980 – 1650 nm	980 – 1650 nm		
Absolute accuracy	600 MHz	400 MHz	200 MHz		
Quick coupling accuracy	600 MHz	600 MHz	600 MHz		
Wavelength deviation sensitivity	20	20	4		
Live calculation speed ¹⁾	3000 Hz	3000 Hz	3000 Hz		
Measurement rate	24000 Hz	76000 Hz	76000 Hz		
Minimum exposure time	41.6 µs	6 μs	6 µs		
Maximum exposure time ²⁾	3.3 ms	9 ms	9 ms		
Minimum required input energy and power	7 μW / 0.29 nJ @ 532 nm	1 mW / 6 nJ @ 1532 nm	1 mW/6nJ @1532 nm		
Fizeau interferometers (FSR)	16 GHz / 100 GHz				
Calibration	Stabilized HeNe laser or any other well known laser source $\Delta v < 150$ MHz				
Recommended calibration period	1 month				
Warm-up time	30 min				
Dimensions	432 × 144 × 144 mm				
Weight	3.5 kg				
Interface	USB 2.0 and GbE	USB 2.0 and CL	USB 2.0 and CL		
Power supply	External 12 V				

integration into existing rackmount systems. A standalone version allows full use of the device without the need for a connection to a PC. Measurements can be recorded directly onto the device internal storage or externally. They can be stored easily on USB flash drives, HDD/SSDs, or accessed the wavelength meter via SCPI client. This modification is available for all wavelength meter models (except FAST series).

Ultra-fast measurements, standalone devices, or customer specific modifications: we are always open to make your requirements possible!

Features

- Turnkey Wavelength Measurement
- Longterm Graph
- Relative Power Measurement
- Network: SCPI via Ethernet
- Linewidth Estimation (Option)
- External Trigger (Option)
- PID Laser Control (Option)
- Multichannel Switch (Option)

Spectrometer OSA

HighFinesse/Ångstrom optical spectrometers LSA and HDSA are designed to analyze the multiline or broadband spectrum of light sources like cw and pulsed lasers, gas discharge lamps, super luminescence diodes, semiconductor laser diodes and LEDs. They are suitable to analyze the spectrum of telecom signals, resolve Fabry-Perot modes of a gain chip, and produce a spectral measurement of gas absorption.

Precision Current Sources

HighFinesse Precision Current Sources have been developed for experiments and quantum technologies in the areas of Cold atom physics and solidstate-physics. The linearly regulated BCS (Bipolar Current Source) and UCS (Unipolar Current Source) series deliver highly stable, low noise source currents for high precision magnetic field control. The current output is floating or is on a user defined potential. Ultrafast response to control signals and trigger functions, clear grounding, connection and signal isolation schemes make the integration of the current sources into complex experimental systems easy.

Linewidth Analyzer

HighFinesse Linewidth Analyzers (LWA) are specialized high-end devices for measuring and analyzing the spectral shape of various laser sources. Through the use of two measurement modes, the LWA can analyze both very narrow laser lines down to 100kHz as well as broader spectra up to 1GHz. They feature an extremely high resolution and accuracy in determining the linewidth of the respective laser source and its spectral lineshape. The LWAs are ideal for optimizing the stability of laser setups.

HighFinesse GmbH Wöhrdstraße 4 72072 Tübingen, Germany

T + 49 (0) 7071 - 53 918 0 F + 49 (0) 7071 - 53 918 99 M info@highfinesse.com

Additional information and distributors: www.highfinesse.com

Wavelength Meter Overview 07-2019 · This document provides general information only and may be subject to change at any time without prior notice